Assessing Mechanical Ventilation

One of the most intimidating things about entering the ICU for the first time is the “life support machine” – the mechanical ventilator. Although I have posted an extensive series of tutorials on Mechanical Ventilation, covering most of the modes, oxygen therapy and applied respiratory physiology, I have attempted, in this tutorial, to distill everything to the “least you have to know” in 40 minutes. Keep in mind that modern machines look more like iPhones, and are far easier to use than the devices I grew up with that looked to me, on day 1, like something in the cartoon below.

I start with a discussion about the difference between normal breathing, CPAP and Positive Pressure Ventilation (PPV). PEEP is, effectively, CPAP during PPV. I then go on to discuss pressure limited modes of ventilation; worldwide this are the most widely used modes in ICU. I limit my discussion to Pressure Assist Control, Volume Guaranteed Pressure Control (VG_PC) and Pressure Support Ventilation (PSV). VG-PC is a popular and flexible option as an ICU’s default mode. However, as it is a pressure controlled mode, there is significant variability in tidal volume and airway pressure from minute to minute.

Several important rules are emphasized: the tidal volume should, in general be lower than 6ml/kg of ideal body weight, the plateau pressure lower than 30cmH2O and the driving pressure lower than 15cmH2O. I introduce the Spontaneous Breathing Index (SBI = RR/TV in L). The magic number is 100. We use the SBI to determine the success of weaning on PSV.

Volume Controlled Ventilation is the predominant mode use in the Operating Rooms (Theatres), and Volume Assist Control is a popular mode in North America. In ICU you must set a peak inspiratory flow and be aware that this may be insufficient during assisted breaths and lead to dys-synchrony. Volume Control is often used in ARDS to “lock in” the Tidal Volume (TV) but the operator must be aware that the TV that matters is not what is dialed up on the ventilator, but what the patient exhales.

I go on to discuss how to assess the patient on invasive mechanical ventilation, by looking at whether they are breathing spontaneously, in which case we determine whether they are suitable for a Pressure Support wean or not, or whether or not there is a problem with oxygenation (increase FiO2, PEEP, Mean Airway Pressure and seriously consider Prone Positioning) or Ventilation (increase Respiratory Rate, Tidal Volume or both, reduce PEEP).

The final part of the tutorial looks at Non Invasive Ventilation (NIV), and I explain how, in general we only use 2 modes on standalone devices – CPAP and Spontaneous Timed (S/T). The latter is similar to PSV with a backup rate, but I point out that instead of PEEP+PS the breath is EPAP + IPAP and IPAP is not built upon IPAP, as is the case with PSV. If one is delivering NIV on an ICU ventilator, then “leak” adjustment or “leak sync” should be used.

@ccmtutorials

Airway Pressure Release Ventilation (APRV)

For the majority of patients admitted to ICU with hypoxic respiratory failure, a conventional ventilatory strategy using volume, pressure or dual control modes with PEEP is usually very effective. With severe lung injury it may be necessary to administer neuromuscular blockade, turn the patient prone and increase the mean airway pressure using PEEP or inverse ratio ventilation (IRV). If these interventions are unavailable, ineffective or inadequate, rescue therapies may be required.

One easily available rescue therapy is Airway Pressure Release Ventilation (APRV). APRV is an extreme version of IRV that looks analogous to using CPAP at high airway pressure levels (e.g. 28cmH2O). Intermittently that high airway pressure is released to remove CO¬ – the release time (less than 1 second) being too short to cause lung derecruitment. Using modern ventilators it is possible utilize the inspiratory capacity to oxygenate the patient (flipping the respiratory cycle from expiration as the primary time of gas exchange to inspiration) and allow the patient to breath spontaneously.

The spontaneous efforts have been shown to improve both gas exchange and cardiovascular performance – but they are not necessary when using this ventilator strategy. Gasping should be avoided. This tutorial covers the science behind APRV, how to set it up, how to use it as part of a ventilator strategy in ARDS, the strengths and limitations of this approach and how to wean it.

I guarantee you will learn something. @ccmtutorials http://www.ccmtutorials.org

Bilevel Pressure Control, BiLevel, BiVent, BiPAP, DuoPAP – a modern mode of ventilation

The introduction of the active expiratory valve was a disruptive technology in critical care mechanical ventilation. This valve flutters when the airway pressure rises above the targeted level – to vent off surplus gas, but maintain airway pressure. It led to the development of newer modes of ventilation (and adjustments to older modes) that allowed the patient to breathe spontaneously independent of the ventilator. As such this was a development of intermittent mandatory ventilation (IMV) – without the risk of breath stacking and expiratory dys-synchrony.

The major mode of ventilation that evolved from the active expiratory valve has several different aliases – BiLevel, BIPAP, BIVENT, DuoPAP etc. but they are all, essentially, pressure controlled intermittent mandatory ventilation modes – that allow the patient to breathe supported or unsupported at a high (Phigh) or low (Plow) airway pressure.

I have chosen the term “Bilevel Pressure Control (BL-PC)” to describe this mode. This tutorial introduces BL-PC, from the perspective of IMV, explains the technology and then discusses the setup and use of the mode. It is a mode of ventilation that is used widely as the “default mode” in many ICUs and can be used in any patient at any time. @ccmtutorials http://www.ccmtutorials.org

Volume Support – The Forgotten Mode?

This tutorial is about Volume Guaranteed Pressure Support – known generally as Volume Support (VS). This, I believe, is an underused mode of ventilation in most ICUs – who prefer to use pressure support. Essentially you specify the desired tidal volume and the ventilator alters to pressure support from breath to breath to deliver something akin to that volume. There is little precision, but – as pressure support is biologically variable anyway – the presence of a volume averaged set of tidal breaths is reassuring, particularly if the bedside practitioner is distracted or inexperienced.
In the tutorial I explain how to set up volume support, what it looks like on three different ventilators – Puritan Bennett, Drager Evita and Servo-i and the strengths and limitations.

Volume Guaranteed Pressure Control (Pressure Regulated Volume Control)

This tutorial is about Volume Guaranteed Pressure Controlled (VG-PC) Ventilation – otherwise known as PC-VG, PRVC, VC+ etc. It is a modern mode of ventilation that aims to deliver a desired tidal volume (volume control) using the pressure controlled paradigm (unlimited flow). As such it is a mode that is often labelled “dual controlled” although, in some ways, it is neither volume controlled, pressure controlled nor both.
Confused? Most are. I have labelled the mode VG-PC – because that is the best approximation – but volume is not necessarily guaranteed and it is certainly not limited. So why bother using this mode. Simply – it works! As a general use “unit default” mode of ventilation VG-PC has few peers: it is nimble enough to be used as the mode of ventilation of choice for patients admitted to ICU following intubation: postoperatively or with respiratory failure.
If the lungs deteriorate – then the mode is versatile enough to deal with it. Being time cycled – mean airway pressure can be easily altered. If compliance or resistance of position changes – then the tidal volume “guarantee” changes the inspiratory pressure from breath to breath to ensure that things remain stable. If the patient breaths spontaneously, using the assist control or SIMV paradigm, flow is increased to meet patient demands. As such it is a very forgiving mode of ventilation, ideal for novices, reassuring to the ICU clinicians. This tutorial explains VG-PC, demonstrates how it is set up in three different ventilators – Puritan Bennetts, Dragers Evitas, Servo I and GE (Aisys) anesthetic machines. I explain the operation of this mode and its strengths and weaknesses. I guarantee you’ll learn something. @ccmtutorials http://www.ccmtutorials.com

SIMV-Pressure Control

This weeks tutorial is on SIMV-Pressure Control. Although this is one of the lesser used modes of ventilation, I sometimes see my colleagues using it in the operating room. And for good reason. Anesthesia ventilators are not set up in the same way as ICU vents. In particular – if you choose “PC” Pressure Control – that is what you get – pressure control; NOT pressure assist control. Hence there is no real provision for patient ventilator interaction. If you choose “SIMV” as pressure control, volume control or volume guaranteed pressure control, then the patient can breath and interact with the ventilator and receive pressure supported breaths. Consequently, conventional SIMV modes, these days, are far more likely to be used in the operating room than in the ICU.

The second reason that I wanted to cover SIMV Pressure Control is to set the groundwork for a different mode “BiLevel Pressure Control” that is built on a similar platform, looks a bit like SIMV, and has significant benefits for those of you who might choose SIMV-PC in ICU.

Most modes of ventilation offer two ways of supporting the spontaneous breath – assist control and SIMV. In SIMV-PC the spontaneous breath can be unsupported, pressure supported or partially supported using Automatic Tube Compensation (ATC). This tutorial covers the type of patient to whom you might deliver SIMV-PC; how to set up the mode; what it looks like on a ventilator screen and the strengths and weaknesses of the mode. @ccmtutorials http://www.ccmtutorials.org

Pressure Assist Control (Part 1)

Virtually all “modern” modes of mechanical ventilation are built on a pressure controlled platform – the original of the species is Pressure Assist Control (PAC). This tutorial introduces PAC as it would be used on a patient admitted, for example, to ICU, with relatively normal lungs.
The tutorial commences with a clinical scenario followed by a guide to the settings on both Puritan Bennett and Drager ventilators. At this point in the course I am going to start spending more time on Drager devices as these ventilators were built from the ground up to be used as pressure controlled machines. There are nuances to the Drager ventilator that may be slightly counter-intuitive to clinicians who are familiar to other brands: in particular the use of a pressure limit (Pinsp) rather than a driving pressure above PEEP. I explain this with examples. I then explain how pressure control works and remind you of flow and time triggering.
All pressure controlled modes are time cycled with decelerating flow patterns. Care must be taken to ensure that inspiratory time is sufficiently long so as to ensure that the airway is adequately pressurized but not to long as will cause Auto-PEEP.
If you want to understand mechanical ventilation you absolutely must be able to interpret and craft ventilator waveforms – and this tutorial focuses on identifying abnormal waveforms in pressure control and correcting them. Hence there is a section on “Crafting the Pressure Waveform” and a section on “Crafting the Flow Waveform.”
Finally I discuss inspiratory time and tidal volumes

Pressure Controlled Ventilation – Fundamentals Part 2: Mean Airway Pressure

In the previous tutorial I introduced some of the fundamental elements of pressure control ventilation – time cycling, decelerating flow, pressure ramps etc. This time I discuss, in detail, the concept of mean airway pressure (Pmaw) and describe why increasing Pmaw is an effective way of treating patients with extensive lung disease. In volume controlled ventilation this can be achieved by titrating PEEP upwards and increasing respiratory rate. Care must be taken to keep the plateau pressure below 30cmH2O in the majority of patients. In pressure control Pmaw is generally increased by increasing inspiratory time – extreme care must be taken, though, to avoid escalating Auto-PEEP as this corrodes tidal volume and actually reduces Pmaw.

If auto-PEEP is unavoidable, as it is with inverse ratio ventilation, then extrinsic PEEP should be reduced to ensure that tidal ventilation is maintained. Pmaw can be achieved in volume control by adding an inspiratory pause, and in pressure control by increasing respiratory rate – but these are less effective approaches – in volume control because of necessary flow limitation and in pressure control because of fixed inspiratory times, and Auto-PEEP.
I guarantee you’ll learn something.

@ccmtutorials

Pressure Controlled Ventilation – The Fundamentals Part 1

It is time to discuss Pressure Controlled Ventilation. In general if a patient has normal lungs or minimal disease, it really does not matter what mode of ventilation you use, pressure or volume controlled. However, there are some major advantages to using Pressure Control – principally in Acute Hypoxic Respiratory Failure. There are also many disadvantages. This is the first of two tutorials that cover the fundamentals of Pressure Control. I start with a discussion of the terminology that I will be using – the Pressure Limit (PL), the Inspiratory Pressure (IP), the Driving Pressure (DP)/Inspiratory Ramp, the Inspiratory Time (Ti) and the Expiratory Time (Texp). Pressure Controlled Ventilation (PCV) is pressure targeted/limited and volume variable. Breaths are time cycled – in inspiration, expiration or both. The flow pattern is always decelerating.

Following the introduction of a clinical scenario – a patient who is developing ARDS, I describe the process of PCV. I explain that tidal volumes are variable in all settings and all modes of PCV and later describe how changing patient position, chest wall elastance and airway resistance can all impact the tidal volume. I discuss why pressure control is the best option for mechanically ventilating children (particularly where there is no endotracheal tube cuff and a significant air leak) and why you need to pay attention to the rise time and respiratory rate. Finally I discuss the major disadvantages of using PCV. I guarantee you’ll learn something!
@ccmtutorials

Mechanical Ventilation – Control

As promised – here is the first tutorial from Module 1 (“Setting Up a Mechanical Ventilator”) of the course on Mechanical Ventilation. I discuss the difference between Volume Control and Pressure Control and Dual Control – including the advantages and disadvantages associated with each mode.

Module 1 Tutorial 1 of the Mechanical Ventilation Course

New Tutorial Every Wednesday,