This is an opinion piece – a rant if you like about the perceptions and understanding of most healthcare professionals regarding the status of Lactate and Lactic Acidosis. It seems to me that everyone has an opinion on Lactic Acidosis, in my own opinion – they are often misinformed. The bottom line is that the body manufactures and processes vast quantities of Lactate each day and that accumulation of Lactate in the blood – Lactic Acidosis – is a sign of acute illness and multifactorial in origin. The Lactate is not the problem. The Lactate will eventually be processed by the liver and kidneys. You need to identify the underlying problem and control the source. Moreover, as Lactate is a signalling molecule and part of a multi-system process for energy transmission (the “Lactate Shuttle”), particularly when there is a lot of white blood cell activity, a raised lactate late in critical illness is frequently a sign of tissue healing, rather than acute inflammation. The biggest problem that I encounter, on a daily basis is the binary belief that hyperlactatemia means global oxygen debt. Certainly it is associated with hypovolemia (which can be identified by capillary refill time and mixed venous oxygen saturation) but more often it is associated with increased catecholamines associated with the stress response. If you are playing lactate-fluid “whack a mole” – each blood sample leads to a fluid bolus, your patient will become fluid overloaded very quickly. The latter is strongly associated with worse outcomes in critical illness.
I make the following points in this tutorial.
Most clinicians overestimate their knowledge of lactate and consider it a waste product of aerobic metabolism. Lactate is likely the end product of glycolysis and a major fuel source for the body. Lactate is always an Arrhenius acid in the body. Lactate is not a good endpoint of resuscitation (“clearance”). Using Lactate “clearance” as an endpoint usually results in excessive fluid resuscitation. High Lactate and Low Glucose is an Ominous Sign. Nobody can be really sure what is in a bag of Hartmann’s Solution (Ringers Lactate). D-Lactate is likely more harmful than you think. There is no specific treatment for Lactic Acidosis.
Lactic acidosis is one of the best biomarkers of acute critical illness, its presence should alert the clinician to a major stress response, where medical and surgical and iatrogenic sources should be considered.
The magnitude and duration of hyperlactatemia (in the acute phase) is predictive of patient prognosis in critical illness. A sustained high lactate reflects a prolonged stress response. The lactate is not the cause or the problem. It is merely a biomarker.
If I were to pick one topic over which I have sweated tear during the past 2 decades, it is lactic acidosis. The problem is that every time I try to explain lactic acidosis, many of those around me become hostile, as if I was committing some atrocity against their religion. And that is because, for the past 100 years, every high school, science, nursing and medical student has been taught that lactate is a waste product that is only made in anerobic conditions. This is 100% ABSOLUTELY completely verifiably WRONG. Lactate, or lactic acid is produced all the time, continuously, in all tissues and is likely the major endpoint of glycolysis. Once produced, it is then either used for oxidative phosphorylation, shuttled to other tissues as a partially metabolized energy source (e.g. the heart and the brain – they love lactate) or metabolized in the liver, principally (the “Cori Cylcle”) – where gluconeogenesis takes place leading to subsequent glycogen storage, fat production or oxidative phosphorylation. As such, glucose is a universal substrate and lactate is a universal fuel.
Lactic acidosis occurs when the production of lactate exceeds the capacity of the liver to clear it. As we produce at least 1250mmol of lactate per day and it is barely measurable in the blood, hepatic clearance capacity is vast. Hyperadrenergic states promote the production of lactate, increase blood glucose and reduce hepatosplanchnic blood flow. The consequence is sometimes called “stress hyperlactatemia” or “aerobic glycolysis.” This is the form of hyperlactatemic seen in sepsis, for example. As such it is an acute phase reactant biomarker – lactate concentration mirrors adrenaline/epinephrine, and should be seen in the same light as CRP, IL-6 and Procalcitonin.
Hyperlactatemia results in metabolic acidosis as a consequence of water dissociation. The strong ion difference (SID) falls. The surplus “hydrogen ions” are mopped up by bicarbonate resulting in a modest fall in pH, but a mEq/L for mEq/L fall in bicarbonate and base excess. Lacate, like Chloride and Ketones, always functions as an acid surrogate and chronic hyperlactatemia is compensated for, usually, by increasing urinary Chloride loss, manifest as hypochloremia.
The terms “Type A” and “Type B” lactic acidosis were introduced by Huckabee in 1961. I believe that these monikers are still useful today. “Type A” represents lactic acidosis associated with blood loss and hypovolemia, intense systemic and splanchnic vasoconstriction, high ejection fraction, low stroke volume and cardiac output and low mixed venous oxygen saturation. Production of lactate increases (and this is multifactorial – not just anerobic), and production falls – due to hepatic hypoperfusion. The treatment is resuscitation, preferably with blood products.
For lactic acidosis, what is not Type A must be Type B – and this represents medley causes (toxic – alcohols), metabolic (end stage liver disease), inflammatory (sepsis), drug induced (metformin and particularly intravenous or inhaled catecholamines).
The term “Clearance” has been used to describe the removal of lactate from the circulation. It is a pharmacological rather than biochemical term, and that has led to some abuse in clinical practice: the belief that “Clearance” can be hurried along with aggressive fluid resuscitation. However, like any particle that is metabolized by the liver, clearance of lactate is determined by the quantity delivered, hepatic blood flow and hepatic clearance capacity. If there is a sustained surge in lactate production, then it may take a while for the liver to clear the surplus from the system while simultaneously dealing with the continued production of lactate by the tissues. In critical illness, we like to see the plasma lactate level falling, but 10-20% is sufficient to be reassuring. A rising lactate is ominous and may indicated inadequate source control or a secondary problem, such as bowel ischemia.
Lactic acidosis may or may not be a marker of tissue perfusion. It is a poor endpoint of resuscitation – and if used as such (the “drive by saline assault”), the result is fluid overload, mutiiorgan dysfunction and prolonged ICU stay.
Sodium Lactate Solutions do not cause lactic acidosis, as they are fully balanced. Most formulations contain a racemic mixture of L-Lactate (which is what the body produces) and D-Lactate (produced by fermentation by bacteria). Blood gas machines do not measure D-Lactate.