Metabolic Acidosis in 2025 – More Important than Ever!

This is a longer version of the lecture that I delivered at the 2025 College of Anaesthesiologists of Ireland Annual Scientific Meeting.

Euglycemic Ketoacidosis associated with SGLT2 Inhibitors

This tutorial looks at an emerging problem in medicine – iatrogenically induced eugylcemic ketoacidosis, associated with the use of SGLT2 (sodium glucose cotransporter 2) inhibitor drugs, also known as Flozins.

There is a global pandemic of metabolic disease caused by escalating ingestion of carbohydrate rich ultra processed food. This results in central obesity, hepatic steatosis (fatty liver) and insulin resistance: together these findings are labelled the “Metabolic Syndrome” (MetS). MetS is associated with systemic inflammation and atherogenesis. In many cases it progresses to Type 2 Diabetes (T2D), the majority of treatments for which increase adiposity and escalate insulin resistance. SLGT2 inhibitors are a relatively new class of drug that work by increasing excretion of ingested glucose by blocking the Sodium-Glucose symporter channel in the proximal tubule of the nephron. The result is mild natiuresis and glycosuria. These agents have been proven effective in the management of T2D and are emerging as effective treatments for other diseases such as congestive cardiac failure and nephropathy. As the name of each of these medications involves the suffix -flozin – they are commonly termed “Flozin” drugs.

One of the major problem with the use of Flozins in the community is failure to discontinue the drug when fasting or not consuming calories. Glucose will continue to be wasted, often generated by gluconeogensis, suppressing insulin secretion, resulting in lipolysis and ketosis. As blood glucose is low there is insufficient insulin present to prevent ketoacidosis. This is one of the causes of euglycemic diabetic ketoacidosis (EDKA). EDKA is associated with both ketoacidosis and hyperchloremic acidosis.

The treatment of EDKA is dextrose (to restore the Kreb’s cycle and suppress ketosis) and insulin – to put some control on the metabolic system. The patient may require a couple of liters of resuscitation fluid – preferably sodium lactate solution (Hartmanns or LR). The ketosis resolves rapidly, but the acidosis resolves slowly because it is principally driven by hyperchloremia. Patients who are being treated with SGLT2 inhibitors that are scheduled for surgery should stop taking these drugs 3 days pre-op. If they are continued inadvertently or surgery is emergent, then a dextrose infusion should be considered and ketones checked routinely.

Alcoholic and Starvation KETOACIDOSIS

This tutorial looks at the twin problems of Alcohol related and Starvation Ketoacidosis. These diagnoses are frequently missed by clinicians because 1. they attribute the metabolic acidosis to another cause e.g. lactate or acute kidney injury or 2. they do not routinely measure blood ketones. It is my view that, in any patient presenting with a plasma bicarbonate below 20mmol or mEq/L or a base deficit of -5 or greater, it is mandatory to measure blood ketones (beta-hydroxybutyrate).

I present two cases, the first is a patient who is admitted with abdominal pain and a likely upper GI bleed, with a history of an eating disorder, who has metabolic acidosis. The second patient is an alcoholicwho recently stopped both eating and consuming alcohol. She also has a metabolic acidosis. I discuss the biochemistry of alcohol metabolism and explain why alcoholics are at risk for ketoacidosis. I also explain why this is part of a paradigm of metabolic failure that, without significant attention to detail, may result in therapy that precipitates a variety of withdrawal syndromes: these include acute Wernicke’s Encephalopathy, Alcohol Withdrawal Syndrome, and acute aquaresis and Osmotic Demyelination. Alcoholic ketoacidosis almost always follows cessation of alcohol intake – and one is unlikely to make this diagnosis in a patient who, for example, presents drunk to the ED (this results in a host of other metabolic anomalies, for example hypoglycemia despite high plasma lactate).

Starvation ketoacidosis is seen in patients who are chronically malnourished or fasted for prolonged periods for surgery, in whom the pancreatic Islet cells have either atrophied or are hibernating. Careful attention must be applied to feeding and refeeding: it is imperative that the patient does not lose further lean body mass. On the other hand refeeding syndrome may result in rhabdomyolysis and death. I guarantee you’ll learn something.

Ketoacidosis

This tutorial looks at the problem of ketoacidosis and, in particular, focuses on diabetic ketoacidosis. Ketones are produced from free fatty acids in the liver, converted to acetyl coenzyme A and oxidatively metabolized for energy production or packaged in the form of acetoacetate or beta hydroxybutyrate and exported to the tissues. This occurs continuously in the body. Control over metabolism is provided by insulin. When insulin levels are high glucose is utilized primarily for energy production and fatty acid metabolism is curtailed. When insulin levels are low fatty acids become the primary source of energy. In situations of very low carbohydrate intake ketones may be measurable in the blood and we call this ketosis. When plasma ketones exceed 3 millimoles per liter this results in a strong ion effect and ketoacidosis. This is generally only seen in states of metabolic failure such as type 1 diabetes starvation and alcoholism.

The ketones acetoacetate and beta hydroxybutyrate are strong anions and cause metabolic acidosis when they accumulate. This manifests as a fall in the bicarbonate and an increase in the base deficit. Classically there is a widened anion gap metabolic acidosis with full respiratory compensation. Nevertheless the extent of the acidosis is rarely explained by ketones alone. Lactic acidosis is frequently present as is acidosis caused by the accumulation of metabolic junk products. Iatrogenic metabolic acidosis may ensue caused by the administration of hyperchloremic (0.9% NaCl + KCl) saline solutions.

Diabetic ketoacidosis is characterized by loss of control of blood glucose, loss of control of blood lipids and hypercatabolism of proteins. Failure to suppress gluconeogenesis within the liver depletes the tricarboxylic acid cycle reserves and results in uncontrolled ketone production. Patients become hyperglycemic glycosuric, keto acidotic, initially hyponatremic, later hypernatremic, and hyperkalemic. The treatment is to fluid resuscitate the patient, administer insulin by intravenous infusion, replenish glycogen stores and provide glucose for intracellular substrate and prevent further ketone production. Extra care must be taken to avoid hypoglycemia and hypokalemia. @ccmtutorials