Pressure Controlled Ventilation – The Fundamentals Part 1

It is time to discuss Pressure Controlled Ventilation. In general if a patient has normal lungs or minimal disease, it really does not matter what mode of ventilation you use, pressure or volume controlled. However, there are some major advantages to using Pressure Control – principally in Acute Hypoxic Respiratory Failure. There are also many disadvantages. This is the first of two tutorials that cover the fundamentals of Pressure Control. I start with a discussion of the terminology that I will be using – the Pressure Limit (PL), the Inspiratory Pressure (IP), the Driving Pressure (DP)/Inspiratory Ramp, the Inspiratory Time (Ti) and the Expiratory Time (Texp). Pressure Controlled Ventilation (PCV) is pressure targeted/limited and volume variable. Breaths are time cycled – in inspiration, expiration or both. The flow pattern is always decelerating.

Following the introduction of a clinical scenario – a patient who is developing ARDS, I describe the process of PCV. I explain that tidal volumes are variable in all settings and all modes of PCV and later describe how changing patient position, chest wall elastance and airway resistance can all impact the tidal volume. I discuss why pressure control is the best option for mechanically ventilating children (particularly where there is no endotracheal tube cuff and a significant air leak) and why you need to pay attention to the rise time and respiratory rate. Finally I discuss the major disadvantages of using PCV. I guarantee you’ll learn something!
@ccmtutorials

Tutorial 14 Mechanisms of Hypoxemia Part 2

This tutorial explains ventilation perfusion mismatch. It will provide you with a platform for understanding oxygen therapy – which I introduce towards the end. I also deal with the concept of oxygen induced hypercarbia. I guarantee you will learn something.  

Contents of This Tutorials:

Ventilation-Perfusion Relationships

Gravity and Blood and Gas Distribution Through the Lungs

Gas and Blood Distribution Through Diseased Lungs

Simplistic Ventilation-Perfusion From Dead Space to Shunt

Stale Gas Within Alveoli

Ventilation Perfusion Relationships – Slimy, Soggy and Stick Alveolar Units

Supplemental Oxygen Therapy For Bronchopneumonia

“Targeted Oxygen Therapy”

When Does Oxygen Therapy Fail? [Shunt]

COPD Flair

Why Does Hyperoxia Cause Hypercarbia (VQ mismatch theory)

The Haldane Effect