This is a trio or tutorials on Acute Myocardial Ischemia, Acute Coronary Syndromes and Cardiogenic Shock.
Tag Archives: dr pat neligan
Critical Illness Nutrition 2 – Calories, Protein, Enteral Route, Gastric Residuals
This is the second tutorial in the nutrition series. Previously I looked at metabolism in critical illness. In this tutorial I start to answer many of the questions that arise on rounds principally: how many calories does the patient need? How much protein? What are the routes of food administration? Is there a benefit to post pyloric feeding tubes? Should I feed the stomach continuously or by bolus? Should I check gastric residual volumes? I provide you with the answers to these questions using the best available evidence.
EXAMINING THE CRITICALLY ILL PATIENT
The Critically Ill Patient should receive a systematic head to toe front to back clinical examination each day. Before you start, stand at the end of the bed and take in the scenery. An experienced ICU doctor will acquire an enormous amount of information about a patient by eyeballing the monitor, looking at the patient’s habitus, the machines, the other attached devices, infusion pumps etc.

Then INTRODUCE yourself and explain to the patient, irrespective of level of consciousness, that you are going to examine them, if that’s ok.
Does the patient have an endotracheal tube, nasogastric tube (is it on free drainage?), enteral feeding tube (yellow) or orogastric tube).
Follow the pattern of Inspection, Palpation, Percussion and Auscultation.
Start with the head and evaluate its shape and color. Then move on to the eyes, nose, lips, mouth (inside and outside) and then on to the side of the head and ears.
Move on to the neck – observe for masses, scars and lines (what type of line). Palpate the neck paying particular attention to the trachea (you may want to do a tracheostomy down the line). Feel for crepitus in the supraclavicular area.
Move on to the chest – inspect – look for recent surgical wounds and scars, chest or mediastinal drains, pacemaker wires etc. Observe the breathing pattern – is it symmetrical? Palpate the cardiac apex and the left sternal border. Auscultate for cardiac murmurs, carotid bruits and for breath sounds, looking for loss of air entry, crackles or bronchial breathing.
Move on from the chest to the arms – are they symmetrical? Is the patient moving both arms? Any redness? What color are the fingers – any mottling? Are the fingertips necrotic? Palpate the arms and hands and feel the temperature – hot or cold? Feel the brachial and radial pulses.
Move on to the abdomen: is it scaphoid or globular? If globular consider the 5 Fs: fat, fluid, flatus, feces, fetus. Are there any scars, wounds or drains? Palpate, percuss and auscultate the abdomen.
Move on to the legs. Are they moving? Are they equal in size? Are the quadriceps wasted? Is there mottling or ischemic changes? Is the patient wearing compression stockings (TED) and or sequential compression devices (SCD)? Palpate the legs, feel the pulses and then look at the ankles (pitting edema) and heels (pressure sores).
Assess the skin – are there any rashes? Are they localized or generalized? If generalized is the rash macular, maculo-papular, vesicular (one side consider herpes zoster) or – ominously purpuric. A generalized purpuric rash is either meningococcemia or thrombotic thrombocytopenia purpura until otherwise proven (both disorders are immediately life threatening).
Roll the patient on their side and look at the back – in particular look at the pressure areas and at any pain catheters and their sites (epidural). Look for the presence of a rectal tube and bowel management system.
When you have completed examination, look at the devices around the bedside sequentially. Start with the main monitor and evaluate the ECG – rate (paced?), rhythm, shape (ST segment changes?). Then the pulse oximeter, arterial blood pressure – invasive and non invasive (correlating?), then the temperature and end tidal CO2 (and waveform).
Move on to the ventilator – if one is attached and note whether the patient is breathing spontaneously or not (why?), what mode (AC, SIMV, BiLevel, PSV), rate, tidal volume, fiO2, PEEP, PFR, plateau pressure, and dynamic compliance and resistance).
Is the patient receiving continuous kidney replacement therapy – note the mode (CVVHDF or SCUF), anticoagulation strategy (citrate or heparin), and fluid removal.
Look for intravenous and enteral feed and take note of the rate and the contents. Then move on to the infusions – iv fluids and electrolyte replacement, analgesics and sedatives, vasopressors, inotropes, insulin and corticosteroids.
Before leaving the bedside look around – did you miss anything and machines or drains or infusions? Then clean up any mess that you have made, restore the bedspace to the condition it was in and inform the nurse of any changes you made or any new observations.
This tutorial has been broken up into two videos to make them easier to navigate.
Help- The Patient’s Airway Pressures are STILL HIGH!
In the previous tutorial we looked at the problem of high airway pressures and addressed inspiratory airway resistance in two ways: peak to plateau pressure gradient and dynamic and static inspiratory resistance.
In this tutorial we will look at three more ways of assessing airflow resistance: the identification and measurement of Auto-PEEP, Flow-Volume Loops and capnography.
Subsequently I discuss high airway pressure due to low total respiratory system compliance. I explain that when “compliance” is low – this may be a problem with the lungs as well as the chest wall – including the abdomen. I finish with the introduction into this course of Abdominal Compartment Syndrome.
Pressure Controlled Ventilation – The Fundamentals Part 1
It is time to discuss Pressure Controlled Ventilation. In general if a patient has normal lungs or minimal disease, it really does not matter what mode of ventilation you use, pressure or volume controlled. However, there are some major advantages to using Pressure Control – principally in Acute Hypoxic Respiratory Failure. There are also many disadvantages. This is the first of two tutorials that cover the fundamentals of Pressure Control. I start with a discussion of the terminology that I will be using – the Pressure Limit (PL), the Inspiratory Pressure (IP), the Driving Pressure (DP)/Inspiratory Ramp, the Inspiratory Time (Ti) and the Expiratory Time (Texp). Pressure Controlled Ventilation (PCV) is pressure targeted/limited and volume variable. Breaths are time cycled – in inspiration, expiration or both. The flow pattern is always decelerating.
Following the introduction of a clinical scenario – a patient who is developing ARDS, I describe the process of PCV. I explain that tidal volumes are variable in all settings and all modes of PCV and later describe how changing patient position, chest wall elastance and airway resistance can all impact the tidal volume. I discuss why pressure control is the best option for mechanically ventilating children (particularly where there is no endotracheal tube cuff and a significant air leak) and why you need to pay attention to the rise time and respiratory rate. Finally I discuss the major disadvantages of using PCV. I guarantee you’ll learn something!
@ccmtutorials
Oxygen Therapy: Variable vs Fixed Performance Devices
Oxygen is probably the most used and misused drug in a hospital. The purpose of oxygen therapy is to restore the PaO2 or SpO2 to a safe level for that patient. One of the major issues with targeted oxygen therapy is the problem of peak inspiratory flow.
During peak inspiration the FiO2 must be constant. That means that flow delivery must meet flow demand. Oxygen therapy can be delivered with variable or fixed performance devices. Variable performance devices include nasal cannula and simple (“Hudson”) facemasks. In both cases oxygen and air are blended in or near the airway. Nasal cannula are remarkably efficient and can deliver low inspired oxygen concentrations. Due to issues with dead space and rebreathing, simple facemasks are unreliable below 35% (5L). Both devices struggle where there is rapid breathing, particularly with large tidal volumes.
Venturi devices, which are really jets use a narrow injection port to entrain and blend oxygen and air proximal to the facemask. They are more precise but less efficient (in terms of total flow) than variable performance devices. Performance is remarkably robust between 24% and 40% inspired oxygen. They perform less well with rapid deep breathing particularly at high FiO2 levels. Non rebreather facemasks use a reservoir to store fresh gas during expiration and facilitate the delivery of FiO2 of approximately 80% with 10 to 15 liters of flow. As such they are highly efficient, although unreliable and non titratable. These devices can be used with modest oxygen flows for transporting hypoxic patients, but are short term remedies. @ccmtutorials http://www.ccmtutorials.org