This tutorial looks at hypernatremia and hyperosmolar syndrome. Hypernatremia is usually caused by three things: 1) Profound dehydration, 2) Too much sodium intake – most of the time this is due to over-resuscitation with isotonic fluids, 3) Central or Nephrogenic Diabetes Insipidis. I explain how to calculate water deficit and water replacement and how to evaluate and treat patients with diabetes insipidus. @ccmtutorials
Tag Archives: @ccmtutorials
Osmotic Demyelination Syndrome / Central Pontine Myelinolysis – final thoughts
I often wonder if the obsession amongst physicians regarding the prevention of Osmotic Demyelination Syndrome (ODS or Central Pontine Myelinolysis – CPM) results in adverse patient outcomes – for example a greater incidence of iatrogenic complications, prolonged length of stay etc.
In this discussion, I look at the history of ODS/CPM, how it became identified with rapid correction of hyponatremia and what patients are at particular risk of this disorder. In the second part of the discussion I address the re-ignited controversy about Sodium/Osmolality correction subsequent to the publication of a major study in NEJM Evidence in 2023.
Ultimately each clinician must make up their own minds on the evidence that is available. It appears to me that there is little or no risk of ODS/CPM in patients with acute hyponatremia, symptomatic or not, and those with a plasma sodium of greater than 120mmol/L. Patients with Sodium levels below 105mmol/L, alcoholics or cirrhotics and malnourished patient appear to be at very high risk. Finally attention should be paid not only to the speed of correction, but where the plasma sodium levels ends up. In many studies – ODS/CMP is a late diagnosis and patients, at the time of diagnosis are hypernatremic (greater than 145mmol/l) – although the rise in Sodium/Osmolality may appear slow over days or weeks.
Urinary Osmolality, Elderly Patients, Alcoholics and Hyponatremia
This discussion came about following a discussion with my colleague, Dr Bairbre McNicholas. It focuses principally on the problem of hyponatremia in elderly patients and undernourished alcoholics. I explain why the lack of dietary salt and protein intake massively inhibits water excretion resulting in hypotonic hyponatremia, often with fluid overload. The traditional approach to managing hyponatremia – fluid restriction – frequently fails because it is a problem of solute “underload” rather than water overload. Commencing iv fluids may precipitate a rapid and potentially dangerous diuresis – hence the most effective therapy for these patients is the FEED them.
I guarantee you’ll learn something.
Metabolic Acidosis – What it is, Diagnosis and Tools
This is Tutorial 4 in the Acid Base Series – on the topic of Metabolic Acidosis. The tutorial is based on a single blood gas – a random sample that was handed to me in the ICU recently. Blood Gas Used in This Tutorial: pH 7.19 PaCO2 32mmHg (4.1kPa) HCO3- 13.1 BE – 16.5 AG 20 Na+ 126 K+ 3.1 Cl- 96 Lactate- 7.2 Ketones- 0.6mmol/L Albumin 21g/L Creatinine 3.3mg/dl (293mmol/l)
Metabolic Acidosis is characterized by an increase in the relative ratio of strong anions to strong cations in the plasma. The PaCO2 and the Bicarbonate fall in a predictable manner. It is possible to compute the effectiveness of respiratory compensation for metabolic acidosis by using the Winters equation.
To understand the mechanism of metabolic acidosis – caused by accumulation of mineral (Chloride) and organic (Lactate, Ketones, Metabolic Junk Products) anions – one needs to apply the law of Electrical Neutrality. All of the positive charges must equal all of the negative charges. As Bicarbonate is consumed in the process of buffering metabolic acidosis, the change in the Bicarbonate level (downwards) can be used to quantify the degree of acidosis. This is important because the pH may be within the normal range due to respiratory compensation. Be aware that the HCO3- quantum that is displayed on a blood gas is derived from the pH and PCO2 by the Henderson Hasselbalch equation.
Unfortunately, because respiratory abnormalities may complicate the diagnosis of metabolic acidosis, and pH and PCO2 are altered by changes in temperature, the precision of a single reading of PCO2 and HCO3- may be poor. Consequently, the Standard Base Excess was developed to excise the respiratory component from the change in bicarbonate. Again it is a derived variable and may be imprecise. Nevertheless, BE (or 1-BE the Base Deficit BD) is a terrific scanning tool to identify the presence of a metabolic acidosis (BD) or alkalosis (BE). It is defined as the amount of strong cation (BD) or strong anion (BE) required to bring the pH back to 7.4 when the temperature is 37 degrees Celcius and the the PaCO2 is 40mmHg or 5.3kPa.
The Base Deficit does not indicate the source of the acidosis, but it can be recalculated to remove the impact of the [Na+], the [Cl-], the body water and the serum Albumin (and the Lactate) to determine the Base Deficit Gap – indicative of the quantity of Unmeasured Anions (UMA, Ketones, if not measured, and Renal Acids (metabolic junk products – MJP).
Traditionally clinicians use the Anion Gap to determine whether a patient has a Hyperchloremic Acidosis (no gap) from a UMA acidosis. I find this quite a dated concept. If the [Cl-] exceeds 105 and the plasma Sodium is normal, the patient has a Hypercloremic acidosis. We can easily measure Ketones and Lactate. The AG is imprecise and should be adjusted for the Albumin level, which tends to hover around 25g per liter in critically ill patients (narrowing the Gap and alkalinizing the patient). I do think if you are calculating the AG that you must include the K+ on the Cation side, the Lactate on the Anion side and adjust the Albumin.
The Strong Ion Gap is a more advanced, more precise and more cumbersome version of the AG. Regardless of the approach, one eventually ends up with a quantify of unidentifiable anions (SIG) that may be of medley origin (metabolism, poisoning etc). It is my opinion that it is useful to tease out all of the different acidifying and alkalinizing processes (the Fencl approach) to determine what is going on with the patient. All of these calculations can be done in seconds with smartphone apps and spreadsheets.
I guarantee you will learn something. @ccmtutorials http://www.ccm-tutorials.com
Why isn’t the patient breathing up? (Triggering the Ventilator)
Is there anything more frustrating in the ICU when you decide to start weaning a patient – they look like they’re assisting the ventilator. You switch them over to a “spontaneous” mode and then……nothing…..no breaths….eventually the backup starts.
This tutorial is about triggering of mechanical ventilation. I will revisit how patients trigger the ventilator, the different systems used and introduce I-Sync – a new method of triggering.
Finally I will discuss the problem of Auto-PEEP and explain why, in the setting of Auto-PEEP, there is no point fiddling with the flow by or negative pressure.
I guarantee you will learn something. @ccmtutorials www.ccmtutorials.org
The Wibbly Wobbly Waveform – Expiratory Dysynchrony
Expiratory dysynchrony is a major unrecognized problem in critical care. Usually it takes one of two forms: a terminal upstroke on the pressure waveform, indicating pressure cycling (breath too long) or a W shaped anomaly in the expiratory flow waveform – indicative of the breath being too short or too long. I call this the “Wibbly Wobbly Waveform”.
This tutorial looks at expiratory dysynchrony – why it happens and how to make adjustments to resolve the problem. I also introduce a relatively new technology: IE Sync.
Help- The Patient’s Airway Pressures are STILL HIGH!
In the previous tutorial we looked at the problem of high airway pressures and addressed inspiratory airway resistance in two ways: peak to plateau pressure gradient and dynamic and static inspiratory resistance.
In this tutorial we will look at three more ways of assessing airflow resistance: the identification and measurement of Auto-PEEP, Flow-Volume Loops and capnography.
Subsequently I discuss high airway pressure due to low total respiratory system compliance. I explain that when “compliance” is low – this may be a problem with the lungs as well as the chest wall – including the abdomen. I finish with the introduction into this course of Abdominal Compartment Syndrome.
50 Tutorials Uploaded! Now – Help the Patient’s Airway Pressures Are High!
The alarm goes off like an air raid siren – everybody starts to panic – somebody starts to do the saturation countdown. There is nothing quite as distressing for the anesthesiologist or intensivist than for the ventilator to pressure cycle and fail to deliver tidal volumes due to high airway pressure.
Generally high pressures are caused by one of three things – a problem with the equipment (kinked tubing, patient biting the tubing etc.), an airway resistance problem (e.g. bronchospasm) or a pulmonary compliance problem (e.g. consolidation or pulmonary edema) or a combination of these. The first thing that the clinician should do when there pressure alarm goes off – is to silence the alarm and increase the Pmax.
Then go looking for the problem: start at the mouth and work your way back to the machine. If you can’t find a fault, put the patient on a manual breathing circuit and commence ventilation. If the patient is easy to bag, there is a machine problem, if difficult – then there is a problem with pulmonary resistance or compliance. In this first tutorial I look at assessing airway resistance. I do this in two ways. First I discuss peak to plateau pressure gradients and then look at airway resistance: dynamic versus static and how to calculate it. I will finish the discussion in the next tutorial.
Volume Pressure Loops – they are on every ventilator and anesthetic machine – look at them
This tutorial looks at the pressure waveform in patients undergoing anesthesia or mechanically ventilated in ICU. All modern ventilators will provide a pressure time waveform and display volume pressure (often called “pressure volume” loops).
This tutorial commences with a discussion about pressure-flow loops – to demonstrate the relationship between flow and airway pressure. I then discuss and describe normal airway pressure versus time waveforms.
Subsequently I explore normal and abnormal dynamic volume pressure loops. I briefly discuss static VP-curves and why they are important in ARDS. Finally I demonstrate how you can measure real plateau pressure and static compliance by pushing one button and performing an inspiratory hold.
@ccmtutorials http://www.ccmtutorials.org
Airway Pressure Release Ventilation (APRV)
For the majority of patients admitted to ICU with hypoxic respiratory failure, a conventional ventilatory strategy using volume, pressure or dual control modes with PEEP is usually very effective. With severe lung injury it may be necessary to administer neuromuscular blockade, turn the patient prone and increase the mean airway pressure using PEEP or inverse ratio ventilation (IRV). If these interventions are unavailable, ineffective or inadequate, rescue therapies may be required.
One easily available rescue therapy is Airway Pressure Release Ventilation (APRV). APRV is an extreme version of IRV that looks analogous to using CPAP at high airway pressure levels (e.g. 28cmH2O). Intermittently that high airway pressure is released to remove CO¬ – the release time (less than 1 second) being too short to cause lung derecruitment. Using modern ventilators it is possible utilize the inspiratory capacity to oxygenate the patient (flipping the respiratory cycle from expiration as the primary time of gas exchange to inspiration) and allow the patient to breath spontaneously.
The spontaneous efforts have been shown to improve both gas exchange and cardiovascular performance – but they are not necessary when using this ventilator strategy. Gasping should be avoided. This tutorial covers the science behind APRV, how to set it up, how to use it as part of a ventilator strategy in ARDS, the strengths and limitations of this approach and how to wean it.
I guarantee you will learn something. @ccmtutorials http://www.ccmtutorials.org