Fundamentals of Anesthesiology and Critical Care Series

Here are the first 9 Tutorials in the Series – the majority are useful for Anesthesiologists and Intensive Care practitioners. Every tutorial contains something that you may not have previously known: I guarantee, who ever you are, that you’ll learn something.

Tutorial 1: Saturated Vapor Pressure

Tutorial 2: The Gas Laws

Tutorial 3: Mixtures of Gases

Tutorial 4: The Alveolar Gas Equation

Tutorial 5: Henry’s Law

Tutorial 6: Carbon Dioxide Solubility

Tutorial 7: Oxygen Solubility

Tutorial 8: Oxygen Content of Blood

Tutorial 9: Oxyhemoglobin Dissociation

Chest Imaging in ICU – Part 3 – Diseases

This is the final tutorial on the basics of Chest Imaging in the ICU. It includes a discussion about the extrapulmonary tissues – pleural and mediastinal and lung diseases (pneumonia, ARDS, PJP etc.).

Chest Imaging in ICU – 1. Anatomy, Lobar Collapse and Consolidation

When patients arrive in the ICU, as soon as they are settled, an AP portable chest x-ray (CXR) is ordered. That x-ray will look different from one done in the radiology department, as the patient is likely semi-recumbent, may be in expiration and the projection is different than from an CXR taken from the back.

The lung has 5 lobes – three on the right and two on the left (the left lung is smaller to accommodate the heart). Each one of these lobes is connected to the trachea by one major airway, that may become plugged off, resulting in atelectasis or collapse of the lobe. As we often need to remove mucus plugs or other material causing these obstructions, it is imperative that you are able to identify the particular lobe that has collapsed. I sequentially go through each lobe of the lungs.

To identify a collapsed lung lobe I suggest that you follow the “Ds” listed in the image below.

the ds of lobar collapse

In addition, radiologists often report lung units as being “consolidated.” This is a catch all phrase that identifies the presence of liquid or semisolid material in airspaces – infectious exudate, blood, mucus, water-fluid, gastric contents etc. You should be able, with you anatomical knowledge, to identify which lung lobe is affected, in particular if you are planning on performing a broncho-alveolar lavage. @ccmtutorials

Assessing Mechanical Ventilation

One of the most intimidating things about entering the ICU for the first time is the “life support machine” – the mechanical ventilator. Although I have posted an extensive series of tutorials on Mechanical Ventilation, covering most of the modes, oxygen therapy and applied respiratory physiology, I have attempted, in this tutorial, to distill everything to the “least you have to know” in 40 minutes. Keep in mind that modern machines look more like iPhones, and are far easier to use than the devices I grew up with that looked to me, on day 1, like something in the cartoon below.

I start with a discussion about the difference between normal breathing, CPAP and Positive Pressure Ventilation (PPV). PEEP is, effectively, CPAP during PPV. I then go on to discuss pressure limited modes of ventilation; worldwide this are the most widely used modes in ICU. I limit my discussion to Pressure Assist Control, Volume Guaranteed Pressure Control (VG_PC) and Pressure Support Ventilation (PSV). VG-PC is a popular and flexible option as an ICU’s default mode. However, as it is a pressure controlled mode, there is significant variability in tidal volume and airway pressure from minute to minute.

Several important rules are emphasized: the tidal volume should, in general be lower than 6ml/kg of ideal body weight, the plateau pressure lower than 30cmH2O and the driving pressure lower than 15cmH2O. I introduce the Spontaneous Breathing Index (SBI = RR/TV in L). The magic number is 100. We use the SBI to determine the success of weaning on PSV.

Volume Controlled Ventilation is the predominant mode use in the Operating Rooms (Theatres), and Volume Assist Control is a popular mode in North America. In ICU you must set a peak inspiratory flow and be aware that this may be insufficient during assisted breaths and lead to dys-synchrony. Volume Control is often used in ARDS to “lock in” the Tidal Volume (TV) but the operator must be aware that the TV that matters is not what is dialed up on the ventilator, but what the patient exhales.

I go on to discuss how to assess the patient on invasive mechanical ventilation, by looking at whether they are breathing spontaneously, in which case we determine whether they are suitable for a Pressure Support wean or not, or whether or not there is a problem with oxygenation (increase FiO2, PEEP, Mean Airway Pressure and seriously consider Prone Positioning) or Ventilation (increase Respiratory Rate, Tidal Volume or both, reduce PEEP).

The final part of the tutorial looks at Non Invasive Ventilation (NIV), and I explain how, in general we only use 2 modes on standalone devices – CPAP and Spontaneous Timed (S/T). The latter is similar to PSV with a backup rate, but I point out that instead of PEEP+PS the breath is EPAP + IPAP and IPAP is not built upon IPAP, as is the case with PSV. If one is delivering NIV on an ICU ventilator, then “leak” adjustment or “leak sync” should be used.

@ccmtutorials

Assessing the Patient’s Ventilation Status

This tutorial looks at the assessment of PaCO2 on the blood gas and how it interfaces with the pH and the Bicarbonate (HCO3-). The control of PaCO2 is a major physiological mechanism for maintaining homeostasis. CO2 production by the body must be balanced by CO2 elimination. PaCO2 rises when there is hypoventilation, this results in a fall in pH and an rise in HCO3 and this is called “Acute Respiratory Acidosis.” If the patient hyperventilates, the PaCO2 and the HCO3 fall and the pH rises: this is “Acute Respiratory Alkalosis.” When there is chronic CO2 retention, the body adapts by wasting Chloride in the urine, the pH normalizes and the HCO3 rises substantially.

Any patient who is intubated, or who has a laryngeal mask in situ, must undergo end tidal (end of exhalation) CO2 monitoring. The capnography waveform is worth evaluating, particularly if airway obstruction or increased resistance is suspected.

Included in this tutorial are various rules of thumb that you can use to determine the Respiratory Acid Base Status of the Patient – including the “Rule of 40.”

kPa “RULES” – Part 2: The “Rules of Acid Base”

Traditionally rules of thumb regarding the changes in PaCO2 and Bicarbonate in acid base balance have utilized mmHg. Unfortunately, in large tracts of the world, particularly in Europe, blood gases are reported in the SI unit kPa. This tutorial is for those people. I cover various acid base abnormalities – pH vs PaCO2, acute and chronic respiratory acidosis, respiratory alkalosis, metabolic acidosis and alkalosis and go through the various acid base rules of thumb using kPa, with examples. I guarantee you’ll learn something.

Rules:

Rule 1 H+ vs pH: a 1nmol/L increase in [H+} results in a 0.01 fall in pH

Rule 2 PaCO2 in Apnea: In apnea the PaCO2 rises by 1.5kPa in the first minute and by 0.5kPa per minute thereafter (this reduces progressively over time to 0.2-3kPa)

Rule 3 PaCO2 vs pH: For every 1kPa increase in the PaCO2 the pH falls by 0.06

Rule 4 PaCO2 vs HCO3 in Acute Respiratory Failure: For every 1kPa increase in the PaCO2, the HCO3 rises by 1mmol/L

Rule 5 PaCO2 vs HCO3 in Chronic Respiratory Failure: For every 1kPa increase in the PaCO2, the HCO3 rises by 3mmol/L and the Chloride falls by an equal value.

Rule 6 PaCO2 vs HCO3 in Acute Respiratory Alkalosis: For every 1kPa increase in the PaCO2, the HCO3 falls by 2mmol/L

Rule 7 PaCO2 versus Base Deficit in Acute Metabolic Acidosis: For every 1mmol/L increase in the Base Deficit (-BE e.g. from -1 to -2), the PaCO2 falls by 0.13kPa e.g. if the BD is -10 the PaCO2 will fall by 1.3kPa from 5.3 to 4

Rule 8 PaCO2 vs HCO3 in Chronic Metabolic Alkalosis (in ICU): For every 1mmol/L increase in the Base Excess (or HCO3) the PaCO2 increase by 0.13kPa e.g. if the BE is +10 then the PaCO2 will increase from 5.3 to 6.6

@ccmtutorials http://www.ccmtutorials.org

Weaning From Mechanical Ventilation (the basics)

This tutorial is about weaning from mechanical ventilation. This is not an easy topic because every professional in the ICU has their own weaning method and their own opinions regarding how best to wean and liberate patients. The literature is unhelpful. Some patients, for example those who have been intubated for a brief period of time, can be awoken and the tube removed after a couple of spontaneous breaths. Other patients require careful multidisciplinary activity over weeks to months to liberate. This tutorial focuses on the in-between group patient who have been intubated for a week or so, who require both clinical and mechanical assessment of their ability to wean and liberate from the ventilator.

Generally the first intervention in weaning is to change the patient over to a spontaneous breathing mode – pressure support or volume support and ensure that alveolar ventilation is adequate to maintain CO2 clearance.

Then a number of clinical and mechanical assessments can be made: is the patient awake, do they have a cough, are they triggering adequately, what is their rapid shallow breathing index (RSBI)? One can estimate muscle strength by performing an occlusion test – either a partial occlusion (P0.1) or a longer occlusion (NIF). Once the patient is assessed as being a candidate for weaning, then one can perform a spontaneous breathing trial (SBT) that is either supported (PS, VS, ATC) or unsupported (T-piece, C-circuit, Trach mask, Swedish Nose).

If the SBT is successful after 90 minutes – extubate the patient. SBTs may fail due to worsening hypoxemia, hypercarbia or hypocarbia, respiratory distress (increase RSBI or use of accessory muscles) or cardiovascular instability (hypotension, hypertension, tachycardia, bradycardia, arrhythmias) or falling levels of consciousness, agitation or acute delirium.

Why isn’t the patient breathing up? (Triggering the Ventilator)

Is there anything more frustrating in the ICU when you decide to start weaning a patient – they look like they’re assisting the ventilator. You switch them over to a “spontaneous” mode and then……nothing…..no breaths….eventually the backup starts.

This tutorial is about triggering of mechanical ventilation. I will revisit how patients trigger the ventilator, the different systems used and introduce I-Sync – a new method of triggering.

Finally I will discuss the problem of Auto-PEEP and explain why, in the setting of Auto-PEEP, there is no point fiddling with the flow by or negative pressure.

I guarantee you will learn something. @ccmtutorials www.ccmtutorials.org

The Wibbly Wobbly Waveform – Expiratory Dysynchrony

Expiratory dysynchrony is a major unrecognized problem in critical care. Usually it takes one of two forms: a terminal upstroke on the pressure waveform, indicating pressure cycling (breath too long) or a W shaped anomaly in the expiratory flow waveform – indicative of the breath being too short or too long. I call this the “Wibbly Wobbly Waveform”.

This tutorial looks at expiratory dysynchrony – why it happens and how to make adjustments to resolve the problem. I also introduce a relatively new technology: IE Sync.

Help – The Patient is Fighting the Ventilator

The patient is turning purple in the bed, alarms are going off, he  is desaturating: he is “fighting the ventilator.” Although a widely used description I believe that it is misused to redefine the problem away from an issue of ventilator operator competency and reframe it as a patient problem. It is not. Most of the time that patient have negative interactions with the ventilator it is a problem of triggering, flow or expiratory cycling. The treatment is not deep sedation and controlled ventilation. The treatment requires skill and nuance, and does not always work. This tutorial looks at inspiration and reasons why it may go wrong.

The most frequently seen patient ventilator dysynchrony is scooping of the pressure waveform, usually associated with flow limited volume controlled ventilation. This can be resolved by increasing the peak flow or changing to pressure control.

In general the ambition to establish a patient on spontaneous assisted ventilation is laudable, but oftentimes we have no idea about what is going on underneath the pressure, flow and volume waveforms. In this tutorial I try and correct the narrative about patient-ventilator interaction when using pressure support. I suggest that volume support in some situations may be a superior approach. I point out that the tidal volume in pressure support has little to do with patient effort and more to do with lung compliance.

I finish the tutorial with a discussion about the inspiratory rise time and explain why you must be careful when using older ventilators.

@ccmtutorials  http://www.ccmtutorials.org