The Blood Gas Machine – Measuring Oxygen, pH, Carbon Dioxide, Tips and Tricks and Derived Variables

To round out the year, here are three tutorials on the blood gas machine, blood gas analysis and the blood gas printout.

The first tutorial looks at how oxygen is measured using the Clark Electrode on the blood gas analyser and demonstrates the importance of co-oximetry in modern blood analysis. From that the fractional saturation of hemoglobin with oxygen is derived.

The second tutorial explains the Glass Electrode that measures pH and PCO2. Subsequently I cover problems you might encounter with blood gas sampling. If you don’t want to watch the technical stuff, I strongly recommend you scroll to the middle of the tutorial (12 minutes in) as it covers information that all healthcare practitioners must know.

The final tutorial looks at all of that other data that appears on blood gas printouts that you may never have understood – and it can be really confusing – DERIVED or calculated variables (bicarbonate, temperature correction, TCO2, O2 content, Base Excess, Standard Bicarbonate, Anion Gap etc.). I cover both the Radiometer ABL machines and the GEM 5000. I guarantee you’ll learn something.

Acid Base Calculations for the ASA

Here are the calculations that I used in my presentation at ASA 2025.

pH versus  PaCO2 

An increase of 10 mmHg in PaCO2 results in a pH drop of about 0.08

Respiratory Acidosis PaCO2  vs HCO3

In Acute Respiratory Acidosis (e.g. patient hypoventilating in the OR) the Bicarbonate Increases by 1mmol/L for every 10mmHg Increase in PaCO2

In Chronic Hypercarbia (COPD) the Bicarbonate ↑ by 4mmol/L for every 10mmHg Increase in PaCO2 and Cl falls by an equivalent amount

Modern Anion Gap = [Na+ + K+] – [Cl + HCO3 + La+ βOH] = Albumin + PO42- + UMA mEq/L

[Albumin]= [Albumin g/L] × (0.123 × pH−0.631)

Albumin Charge is simplified to 2.5 (albumin in g/dl) = Alb in mEq/L

Change in Albumin is (44 – Albumin) / 4

To determine the effectiveness of respiratory compensation use the Winters formula:

(Bicarbonate Version) Expected PaCO2 in Acute Metabolic Acidosis is
1.5 x [HCO3] + 8 (in mmHg)

(Base Deficit Version) Expected PaCO2 in Acute Metabolic Acidosis is
Normal PaCO2 – BD (in mmHg)

The Base Excess Gap (Fencl Story with my modification)

Identify the BE on the ABG

Calculate the SID for Na+-Cl+H2O by [Na+ – Cl – 35] BDNaCl

Calculate the SID for La and β-OH (1mmol = 1mEq) BDLβOH

Calculate the Impact of Albumin (44 – Alb g/L)/4 BEALB

Add these together BENaCl BDLβOH BEALB

Subtract from BE on the Blood Gas

The result is UMA in mEq/L

Finally, the Strong Ion Gap (arguably the gold standard)

The calculation for the strong ion gap (SIG) is:

Strong Ion Gap (SIG) = SIDa-SIDe

SIDa (apparent SID) = ([Na+] + [K+] + [Mg2+] + [Ca2+]) – ([Cl] + [Lactate] + [βOH])

SIDe (effective SID) = [HCO3] + [charge on albumin] + [charge on Pi]

The degree of ionization for weak acids is pH dependent, so one must calculate for this:

[charge on albumin] = [albumin] (in g/L) x (0.123 x pH – 0.631)

[charge on Pi] = [Pi] (in mg/dL) /10 x pH – 0.47

The SIG quantifies UMA

Fundamentals of Anesthesiology and Critical Care Series

Here are the first 9 Tutorials in the Series – the majority are useful for Anesthesiologists and Intensive Care practitioners. Every tutorial contains something that you may not have previously known: I guarantee, who ever you are, that you’ll learn something.

Tutorial 1: Saturated Vapor Pressure

Tutorial 2: The Gas Laws

Tutorial 3: Mixtures of Gases

Tutorial 4: The Alveolar Gas Equation

Tutorial 5: Henry’s Law

Tutorial 6: Carbon Dioxide Solubility

Tutorial 7: Oxygen Solubility

Tutorial 8: Oxygen Content of Blood

Tutorial 9: Oxyhemoglobin Dissociation

Assessing the Patient’s Ventilation Status

This tutorial looks at the assessment of PaCO2 on the blood gas and how it interfaces with the pH and the Bicarbonate (HCO3-). The control of PaCO2 is a major physiological mechanism for maintaining homeostasis. CO2 production by the body must be balanced by CO2 elimination. PaCO2 rises when there is hypoventilation, this results in a fall in pH and an rise in HCO3 and this is called “Acute Respiratory Acidosis.” If the patient hyperventilates, the PaCO2 and the HCO3 fall and the pH rises: this is “Acute Respiratory Alkalosis.” When there is chronic CO2 retention, the body adapts by wasting Chloride in the urine, the pH normalizes and the HCO3 rises substantially.

Any patient who is intubated, or who has a laryngeal mask in situ, must undergo end tidal (end of exhalation) CO2 monitoring. The capnography waveform is worth evaluating, particularly if airway obstruction or increased resistance is suspected.

Included in this tutorial are various rules of thumb that you can use to determine the Respiratory Acid Base Status of the Patient – including the “Rule of 40.”

kPa “RULES” – Part 2: The “Rules of Acid Base”

Traditionally rules of thumb regarding the changes in PaCO2 and Bicarbonate in acid base balance have utilized mmHg. Unfortunately, in large tracts of the world, particularly in Europe, blood gases are reported in the SI unit kPa. This tutorial is for those people. I cover various acid base abnormalities – pH vs PaCO2, acute and chronic respiratory acidosis, respiratory alkalosis, metabolic acidosis and alkalosis and go through the various acid base rules of thumb using kPa, with examples. I guarantee you’ll learn something.

Rules:

Rule 1 H+ vs pH: a 1nmol/L increase in [H+} results in a 0.01 fall in pH

Rule 2 PaCO2 in Apnea: In apnea the PaCO2 rises by 1.5kPa in the first minute and by 0.5kPa per minute thereafter (this reduces progressively over time to 0.2-3kPa)

Rule 3 PaCO2 vs pH: For every 1kPa increase in the PaCO2 the pH falls by 0.06

Rule 4 PaCO2 vs HCO3 in Acute Respiratory Failure: For every 1kPa increase in the PaCO2, the HCO3 rises by 1mmol/L

Rule 5 PaCO2 vs HCO3 in Chronic Respiratory Failure: For every 1kPa increase in the PaCO2, the HCO3 rises by 3mmol/L and the Chloride falls by an equal value.

Rule 6 PaCO2 vs HCO3 in Acute Respiratory Alkalosis: For every 1kPa increase in the PaCO2, the HCO3 falls by 2mmol/L

Rule 7 PaCO2 versus Base Deficit in Acute Metabolic Acidosis: For every 1mmol/L increase in the Base Deficit (-BE e.g. from -1 to -2), the PaCO2 falls by 0.13kPa e.g. if the BD is -10 the PaCO2 will fall by 1.3kPa from 5.3 to 4

Rule 8 PaCO2 vs HCO3 in Chronic Metabolic Alkalosis (in ICU): For every 1mmol/L increase in the Base Excess (or HCO3) the PaCO2 increase by 0.13kPa e.g. if the BE is +10 then the PaCO2 will increase from 5.3 to 6.6

@ccmtutorials http://www.ccmtutorials.org

The Ripple of Ions – Ionization and the pKa

To truly understand acid base chemistry, it is imperative that you have a grasp of ionization theory. Although this might appear a little nerdy, it is quite straightforward and will also provide you with a basis for understanding the basic pharmacology of local anesthetics and opioids. Particles that disintegrate into component parts that carry charge are known as ions. If that charge is positive they are cations and if it is negative they are anions. Measurement of charge is known as valency, Most electrolytes in the body are univalent – Na, Cl, K, HCO3 – and their valency is quantifiably identical to their molarity (i.e. 140 mmol/L of Na+ = 1mEq/L). Some, however, are divalent – Calcium and Magnesium and Phosphorous. Ionized particles are a major component of acid base chemistry. They may be derived from mineral salts – Na, Cl, K, PO4, Mg, Ca or organic molecules – Lactate, Ketones, Metabolic Junk Products – manufactured in the body. Weak anionic acids are also manufactured – Bicarbonate and Albumin.

The relative quantities of different particles is governed by MASS CONSERVATION. Regardless of the source and quantity of anions and cations ELECTRICAL NEUTRALITY must always hold. Where there is imbalance between anions and cations the electrochemical void is filled by hydrogen or hydroxyl (derived from water dissociation) and acid base abnormalities ensue.

What makes ionized particles “strong” or “weak” acids or bases is determined by the pKa – the Ion Dissociation constant. This is the pH at which the particle is 50% dissociated or associated. As all electrochemical activity in the body occurs withing the physiological range of pH – 6.8 to about 7.65 – whether a ionic particle’s pKa is below or above, essentially 7.4, determines whether it is an acid or a base. For example – Lactic Acid has a pKa of 3.1 – at that point is is 50% associated (LA-H) and 50% dissociated (La-). At the environmental pH falls, for example towards 1, for example in the stomach, the chemical associates more (Lactic Acid). As the pH rises towards 7.4 it dissociates more (Lactate). At all physiologic ranges of pH Lactate is fully dissociated. Likewise, chemicals that have a pKa above the physiologic range pH (i.e greater than 7.6) are bases – and they become more associated at higher pH ranges. Sodium Hydroxide has a pKa of greater than12, which means that at pH 12 it is 50% associated, at pH 15 it is close to 100% associated. At physiologic range pH it is fully dissociated. Particles that are fully dissociated at all physiologic ranges of pH – cations such as Na+, K+, Mg2+ and Ca2+ and anions such as Cl-, Lactate- and Beta-Hydroxybutyrate, are known as STRONG IONS – they never bind to other ions (to create salts), hydroxyl or hydrogen in the body. Particles that are partially dissociated, whose pKa is closer to 7.4 – Bicarbonate, Albumin, Phosphate, Hemoglobin, are WEAK ACIDS and as they pick up more hydrogen ions at lower pH levels, they act as buffers.

Metabolic acid base balance is governed by the relative charge distribution (mEq/L) of STRONG IONS – known as the STRONG ION DIFFERENCE (SID) and the availability of weak acid buffers (ATOT). If the SID reduces, there is excess anion and metabolic acidosis. If the SID increases, there is excess cation or deficient anion and metabolic alkalosis.

I guarantee you’ll learn something. @ccmtutorials http://www.ccmtutorials.org

RESPIRATORY ACID BASE DISORDERS

This is Tutorial 2 in the Series on Acid Base: The FIzz of CO2.

Carbon Dioxide is a gas that is produced by the mitochodria and passes through the cell membrane into the extracellular fluid and blood. There it dissolves, attaches to hemoglobin or, under the influence of carbonic anhydrase, hydrates with water to generate carbonic acid – which rapidly dissociates to release hydrogen (bound to hemoglobin) and bicarbonate. Carbon Dioxide obeys Dalton’s law and Henry’s law. The latter determines that the PCO2 is directly proportionate to the CO2 content. Carbon Dioxide becomes more soluble in the blood as temperature falls. Hence measuring gaseous CO2 requires the blood gas machine to be set at 37 degrees.

The body produces, at rest, 200ml per minute of CO2. The body excretes 200ml per minute of CO2. As metabolism increases, respiratory excretion of CO2 increases. This results in a PaCO2 of 40mmHg or 5.1kPa. There is a 3-4mmHg or 0.5kPa difference between the PaCO2 and the etCO2. Because the body exists, usually, is steady state, the etCO2 can be used to estimate the PaCO2 (most of the time). In apnea, the PaCO2 rises rapidly – it doubles in 8 minutes.

When PaCO2 rises, [HCO3-] rises also – and in a very predictable way. So, when a patient develops acute respiratory failure, or underventilates (for example under anesthesia), pH falls, predictably, the PaCO2 rises, predictably and the Bicarbonate rises, predictably. This is acute respiratory acidosis – and in this tutorial I will explain how and why this occurs.

It is imperative to understand that CO2 and [HCO3-] are different versions of the same thing in the body and the rise in bicarbonate in respiratory disorders is not some form of “compensation” it is physiology. Indeed in chronic respiratory failure, the increase in respiratory acids (Chronic respiratory acidosis) is counterbalanced by a fall in the plasma Chloride levels. Acute respiratory alkalosis is associated with pain, anxiety, agitation or over ventilation and is associated with a modest fall in Bicarbonate.

@ccmtutorials http://www.ccmtutorials.com