Methanol Poisoning

In November 2024 six tourists died of suspected Methanol Poisoning in Laos, and several more were hospitalized. Methanol, or methyl alcohol, is an industrial chemical used to thin paints, as a precursor for medley chemicals and for fuel cells. It is passed off as “vodka” (odorless, tasteless, clear) to unsuspecting victims.

Methanol is metaboized by the same pathways as ethanol, but to formaldehyde and formate. Although small amounts of methanol may be found in the body, due to gut bacterial fermentation, methanol poisoning is a life threatening problem. Formate causes a widened anion gap metabolic acidosis, blindness, brain damage and interferes with mitochondrial function resulting in cytotoxic hypoxia.

The treatment for methanol poisoning is fomipazole given 12 hourly intravenously, folate, intravenous fluids and, if necessary, renal replacement therapy. Fomipazole competitively antagonizes the metabolism of methanol by the enzyme alcohol dehyrogenase. If fomipazole is unavailable, ethanol can be given as an emergency measure, intravenously or orally.

Septic Shock

This tutorial looks at the diagnosis and management of the patient with septic shock. See below for a transcript of this major tutorial.

SEPSIS AND SEPTIC SHOCK

Introduction

Sepsis is defined as life threatening organ dysfunction due to a dysregulated host response to infection. In other words, normally, once we are infected with bacterial, fungi or viruses, our immune system activates, mops up the pathogens, clears away debris and returns to normal afterwards. That does not occur in systemic sepsis – either due to an overwhelming infection (e.g. bowel perforation) or an anomaly within the immune system: there is an initial massive release of inflammatory and cytotoxic material (sometimes called a “cytokine storm”) and then immunoparalysis, due to loss of inflammatory reserve. The patient is a “sitting duck” for further infection.

Septic Shock is defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities substantially increase mortality. There are anomalies of the cardiovascular system, neurohormonal system and autonomic nervous system. At the bedside, the clinical presentation is of acute organ dysfunction, the most common of which are hypotension, tachypnea and confusion. The most basic definition of septic shock is that it is an infected state characterized by persistent hypotension despite adequate fluid resuscitation and lactate levels ≥ 2 mmol/L. It requires the need for vasopressor therapy to maintain a mean arterial pressure (MAP) ≥ 65 mmHg.

Septic shock is a major cause of morbidity and mortality worldwide, especially in intensive care units. Understanding the pathogenesis of septic shock is critical to improving therapeutic interventions and outcomes.

PATHOGENESIS OF SEPSIS AND SEPTIC SHOCK

The pathogenesis of septic shock involves a series of immune, inflammatory, and metabolic responses. This intricate cascade is initiated by infection, typically from a bacterial pathogen, but can also be caused by fungi, viruses, or parasites. The resultant immune response goes haywire, leading to dysregulation of the inflammatory process, endothelial dysfunction, microcirculatory failure, metabolic derangements, and organ failure.

Initial Infection and Immune Response

Sepsis starts with the encroachment of a pathogen (usually bacteria) into the bloodstream or tissues. The immune system detects these pathogens via pattern recognition receptors (PRRs) such as toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) present on immune cells like macrophages, dendritic cells, and neutrophils. These receptors recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), which trigger an innate immune response.

Once the infection is recognized, a cascade of signaling events is initiated, leading to the production of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukins (IL-1, IL-6, IL-8), and interferons. This cytokine storm is crucial for recruiting immune cells to the site of infection, increasing vascular permeability, and amplifying the immune response. This happens in all situations when infection occurs and it is self limiting.

However, in septic shock, the initial immune activation becomes dysregulated. Massive release of proinflammatory mediators overwhelms the body’s control mechanisms, causing a systemic inflammatory response (SIRS) that causes intense collateral damage to tissues distant to the site of infection. There is widespread activation of  and damage to endothelial cells,  resulting in glycocalyx disruption and capillary leak, the coagulation system, resulting in microvascular coagulation, and the complement cascade, resulting in tissue damage.

Once of the major issues to understand in early sepsis is that due to dysregulation, much of the body’s inflammatory reserve and homeostatic mechanisms are used up early. Consequently, it may take some time to restore innate immunity (immunoparalysis), making the patient vulnerable to secondary infections, and neurohormonal reserve – particularly vasopressin and, later, cortisol.

Impact of Sepsis on the Endothelium and Microcirculation

Endothelial cells lining the blood vessels play a central role in maintaining vascular integrity, regulating blood flow, and controlling inflammation. In septic shock, the release of proinflammatory cytokines and mediators causes endothelial activation and dysfunction. This results in:

  1. Increased vascular permeability: capillaries become leaky and protein rich fluid extravascates into the interstitium, expanding and damaging its gelatinous structure (“fracking the interstitium”). This results in reduced circulating volume, tissue edema and organ dysfunction. such as nitric oxide (NO), prostacyclin, and other vasoactive substances.
  2. Vasoplegia –  Pathological vasodilatation across the arteriolar and venular network is a characteristic component of septic shock. The causes are multifactorial, but include increased production of vasodilators like nitric oxide, bradykinin, and prostacyclin. This is manifest by low blood pressure, caused by increased unstressed blood volume, reduced venous return, reduced stroke volume and reduced arterial resistance.
  3. Microcirculatory dysfunction: the microcirculation is characteristically disrupted in sepsis. This is characterized by clot deposition in small vessels, platelet aggregation, disruption of the glycocalyx and endothelial swelling. Blood flow is reduced, and this leads to tissue hypoxia and organ dysfunction, particularly in the lungs, kidneys, liver, bowel and heart.
  4. Coagulopathy: Septic shock is associated with coagulopathy likely due to activation of the coagulation cascades following endothelial disruption, resulting in widespread microthrombosis. The platelet count falls dramatically, and then, due to loss of coagulation reserve, bleeding results.

 Metabolic Changes in Sepsis (including Lactate)

Although I don’t cover metabolic changes in the video tutorial – it is worth looking at them to develop a holistic understanding of sepsis/multi-organ dysfunction.

  1. There is insulin resistance – resulting in hyperglycemia, and subsequent relative hypoinsulinemia. Increased blood glucose provides fuel for pathogens and exacerbates immune dysfunction.
  2. Mitochondrial function and oxygen utilization become dysfunctional. The impact of this on outcomes is poorly understood, but it may be part of the motor behind multi-organ failure, particularly in the kidneys.
  3. Principle utilization of skeletal and visceral proteins as sources of energy, principally by gluconeogesesis. The body is unable to use fat stores as a source of energy, and “autocannibalism” results. This may be a significant component of “polymyopathy” of critical illness.
  4. Aerobic Glycolysis – although the body produces approximately 1.5 mol of Lactate per day, this is usually rapidly cleared by the Liver (Cori cycle) such that plasma lactate is unmeasurable. I acute critical illness including sepsis, lactate conversion to pyruvate is reduced and lactate production increased due activation of lactate dehydrogenase by epinephrine (adrenaline). Reduced or dysfunctional hepatic blood flow results in reduced lactate metabolism. The consequence is hyperlactatemia and metabolic acidosis. The degree of acidosis strongly correlates with the severity of acute critical illness. A plasma lactate in excess of 2mmol/L is considered clinically relevant.  

Organ Dysfunction and Failure (MODS – Multi-Organ Dysfunction Syndrome)

It is imperative that clinicians quantify the degree of organ failure in acute critical illness at an early stage. A useful tool for monitoring MODS is the SOFA score.

The most easily quantified systems for identifying MODS are the respiratory system, the cardiovascular system, the central nervous system, the kidneys, coagulation and the liver.

  • Respiratory  – hypoxic respiratory failure that may progress to Acute Respiratory Distress Syndrome (ARDS)
  • Cardiovascular – hypotension, hypoperfusion
  • CNS – confusion, delirium
  • Kidneys – oliguria, acute kidney injury
  • GI/Liver – Ileus, hyper or hypolglycemia, hyperbilirubinemia
  • Blood – coagulopathy, thrombocytopenia

The mechanisms behind each of these injuries are beyond the remit of this article. One should calculate the SOFA score on each critically ill patient each day.

SCREENING THE PATIENT FOR SEPSIS

Every hospital has its own screening tool for sepsis, and, despite 30 years of proposals, there is no universally accepted tool. Below is a summary of the options currently available.

Quick SOFA (qSOFA) Score (2016)

The qSOFA score is based on three clinical criteria:

Respiratory rate ≥ 22 breaths per minute

Altered mentation (Glasgow Coma Scale < 15)

Systolic blood pressure ≤ 100 mmHg

A qSOFA score of 2 or more points indicates a high risk of sepsis and warrants immediate further evaluation and intervention.

Although the qSOFA  score is a useful rule of thumb, it is neither sensitive nor specific and not recommended as a standalone screening tool by the Surviving Sepsis Campaign.

Systemic Inflammatory Response Syndrome (SIRS) Criteria (1992)

The Systemic Inflammatory Response Syndrome (SIRS) criteria have been widely used to identify septic patients for 30 years and remain popular in many hospitals. Again they lack both sensitivity and specificity.

The SIRS criteria are:

Temperature: >38°C or <36°C

Heart rate: >90 beats per minute

Respiratory rate: >20 breaths per minute or PaCO2 < 32 mmHg

White blood cell count: >12,000/mm³, <4,000/mm³, or >10% immature bands

Patients who meet 2 or more criteria are considered to have SIRS, and if the cause is infection, it may progress to sepsis.

Early Warning Scores

Most hospitals use Early Warning Scores (EWS) to identify the deteriorating patient on the ward, but these are now commonly combined with SIRS and other criteria for identifying sepsis. EWS looks at common bedside observations and categorizes the variation from normal. These include heart rate, respiratory rate, need for oxygen, blood pressure, level of awakeness (AVPU) and temperature. The more systems that are abnormal the higher the score and the more likely that an intervention (e.g. consulting the critical care team) will take place. I am a big fan of EWS.

If medical review determines that the patient indeed is likely to have sepsis, a “bundle” of care (such as “sepsis-6”) is activated and the patient follows a sepsis pathway. Although such pathways are used worldwide, I am going to follow a slightly different 10 point therapeutic route that mirrors the Surviving Sepsis Guidelines and is more applicable to critical care.

MANAGING THE PATIENT WITH SEPTIC SHOCK

Step 1 Put in an IV line

TAKE BLOOD IMMEDIATELY FOR:

1. Blood Cultures

2. CRP or Procalcitonin/ FBC (WCC) / Lactate

This will give us an idea of the level of inflammation (WCC, CRP and Lactate) over the next hour or two and, hopefully will help us guide antibiotic therapy

Step 2 Through that IV line

ADMINISTER

  1. Broad Spectrum Antibiotics (e.g. co-amoxyclav) based on your best guess source.
  2. Upto 30ml/kg of intravenous fluid, preferably a balanced solution such as Hartmann’s, Lactated Ringers, or Plasmalyte-148.

Step 3 Vasopressors

If the MAP (or adjusted MAP target) does not reach 65mmHg after fluid resuscitation (do NOT give more than 5L of iv fluid) then the patient requires VASOPRESSORS.

The vasopressor of choice is norepinephrine (noradrenaline -NAD). This is an extremely effective agent: it restores the stressed blood volume, increases diastolic blood pressure – improving coronary blood flow, has inotropic effects – thus maintains stroke volume, and preferentially perfuses the midline structures, rather than the extremities. The major benefit of norepinephrine versus epinephrine in this setting is NAD’s lack of B2 adrenoceptor effect – it does not raise blood glucose or lactate.

Norepinephrine should be administered relatively early, and it does not require a central line: NAD can be safely delivered by a proximal peripheral cannula.

Step 4: Hormone Replacement Therapy

If the dose of norepinephrine is rising (the exact level is unclear – I turn to this drug early) then an ultra low dose infusion of arginine vasopressin is indicated. Vasopressin works via V1 receptors to increase vascular tone, and V2 receptors to maintain vascular volume. The dose is typically 0.03 units per minute – this will have no physiological impact on normal patients – in the setting of sepsis or severe blood loss vasopressin (as hormone replacement therapy) restores vascular tone, improves the effectiveness of norepinephrine and improves renal blood flow and urinary output. There is no downside, and I typically wean norepinephrine off before stopping vasopressin.

If High Dose Vasopressors are Not Working – consider Corticosteroids

Corticosteroids in this setting may have 2 benefits: 1. Damping down the initial hyperinflammatory response (some evidence in community acquired pneumonia), 2. As hormone replacement therapy (glucocorticoids are co-factors for catecholamine function).

Step 5 Identify and Control the Source of the Infection

The source is either medical or surgical. Medical sources are commonly – urinary tract, respiratory, intracranial (meningitis) or catheter related bloodstream infections.

As part of the workup, various cultures should be sent: blood culture, sputum culture, urine culture. A chest x-ray should be performed and tailored imaging to confirm the suspected source of the problem (CT abdomen, pelvis, chest, spine, brain)

Surgical sources are medley – they range from necrotizing soft tissue infections, to retained products of conception, perforated bowel or viscus, pilonidal abscess, intra-abdominal abscess, pancreatitis, spinal abscess, wound infection or wound dehiscence. Your cannot medically manage a surgical problem.

Step 6 Be Careful of the Search Satisficing Error

If the patient is persistently hypotensive despite multiple high dose pressors you need to expand your search for the problem. Is this cardiogenic shock (consider and echocardiogram) or a missed head or spinal injury (neurogenic shock or raised ICP). Does the patient have abdominal compartment syndrome (hypotension, oliguria, high airway pressures and intra-abdominal pressure of >20mmHg) or another compartment syndrome – cardiac tamponade, too much PEEP, tension pneumothorax etc.

If the lactate does not fall, you have a continued problem: there is still splanchnic hypoperfusion (the patient is under-resuscitated), the bowel or splanchnic circulation are ischemic, or the source is not controlled. Be careful of overvaluing hyperlactatemia in patients on epinephrine (adrenaline) infusions – this directly drives up lactate levels.

If there is severe mottling – there is no flow to the microcirculation – and that is what you can see on the skin – you cannot see the lungs, bowel and liver which are also suffering. Two things should be considered – is norepinephrine doing more harm than good (lower your MAP target and reduce the NAD) and is the patient still under-resuscitated. In this setting it is reasonable to “empty the kitchen sink” into the patient – giving plasma, 20% albumin and even 8.4% NaHCO3 to expand the plasma volume and restore blood flow.

Step 7 Prevent Further Complications

Once the patient is in the ICU and relatively stable you need to back off on therapeutic interventions, and take measures to prevent iatrogenic complications. These include:

  1. Stopping further crystalloid resuscitation – NO maintenance fluids – to avoid both fluid and solute overload.
  2. Wake the patient up and avoid over sedation, give the patient a day-night cycle and proper sleep hygiene to ensure that they don’t develop deliriu,
  3. Avoid intubation if at all possible, if not – carefully watch the tidal volumes and airway pressures to avoid ventilator induced lung injury.
  4. Sit the patient up and sterilize the mouth to avoid ventilator associated pneumonia.
  5. Remove central lines when no longer needed.
  6. Give stress ulcer prophylaxis (if indicated).
  7. Watch carefully for bed sores – turn and mobilize the patient.
  8. Address nutrition, bowel hygiene and the microbiome at an early stage.

Step 8 Deresuscitate and Normalize the Patient

After 7 days one should be aiming to return the patient to their baseline weight – and that means deresuscitating the crystalloids from the patients body, either spontaneously, using diuretics or using continuous kidney replacement therapy (CKRT). The fluid balance should be even by day 7. In addition, nutrition should be started by day 3 and the patient should be receiving full nutrition by day 7. Sedation and other “consciousness clouding” drugs should be discontinued. Antibiotics should be de-escalated and stopped.

Step 9: Start Rehab Early

The multidisciplinary team are an essential component of modern critical care – a patient lying sedated in a bed, endlessly, develops medley complications. Sleep hygiene is imperative. Early mobilization and assessment by physiotherapy, occupational therapy, speech therapy etc. is essential. The microbiology team should assess the need for antimicrobials on a daily basis and care taken to avoid hospital acquired infections. Finally, critical illness takes a massive psychological toll – intensive care units should have a staff psychologist to deal with the patients mental health needs, to prevent PTSD.

Step 10: If the Patient is Not Getting Better They Are Getting Worse

If the patient does not recover rapidly within 7 days then they are likely to enter phase of chronic critical illness, where the body’s vital systems seem to go into a state of hibernation. Often they develop severe muscle weakness, resulting in difficulty liberating from mechanical ventilation (a tracheostomy may be required), the autonomic nervous system may become dysfunctional – manifest by rapid swings in blood pressure and heart rate, the neuroendocrine system may be burnt out and the patient may develop immunoparalysis.

There is no magic bullet to restart the body in chronic critical illness. The majority of patients will eventually recover. Unfortunately, many don’t – multiple infectious and iatrogenic hits results in progressive multi-organ failure and ultimately death. Although in hospital sepsis outcomes have improved dramatically since the turn of the century, little progress has been made on chronic critical illness; unfortunately.

HYPOVOLEMIC SHOCK

Hypovolemic shock is one of the major problems we encounter in acute critical illness. This tutorial explains the mechanisms by which the body compensates for hemorrhage/hypovolemia, why the blood pressure and hemoglobin saturation are unhelpful and what tools may be useful at the bedside to assess the patient.

I also briefly discuss resuscitation of the bleeding patient and compartment syndromes.

Blood Pressure and How We Measure it

One of the most common physiologic and pathologic abnormalities that we get called for is dysfunctional blood pressure: hypotension and hypertension. This tutorial looks at the question – “What is Blood Pressure” the components and its regulation. I then go on to discuss arterial pressure monitoring, invasive (via arterial lines) and non invasive (using oscillometers) and the strengths and weaknesses of both.

Is 0.9% Saline Harmful in Critical Illness

Since the 1920s it has been known that administration of chloride rich intravenous fluids, characterized by a reduced Sodium to Chloride strong ion difference (SID), causes a progressive metabolic acidosis. This iatrogenic hyperchloremic acidosis was particularly problematic in the era before lactate and ketone measurement was widely available, prolonging critical care stay and resulting in, often, unnecessary tests and therapies. During the 2000s a body of literature emerged supporting the hypothesis that hyperchloremia, defined as a plasma chloride of greater than 110mmol/l may be harmful. In a series of retrospective analyses, hyperchloremia was associated with increased mortality across a spectrum of disorders, including surgery and critical illness. Hyperchloremia was also associated with increased risk of kidney injury and the requirement for renal replacement therapy. There was also some data that hyperchloremia may be associated with reduced splanchnic blood flow.

A series of papers that looked at isotonic saline solution (ISS – 0.9% NaCl ), often referred to as “normal” saline, versus Plasmalyte 148 (PL) in Diabetic Ketoacidosis (DKA), demonstrated that ISS was associated with prolonged duration of stay in critical care, usually associated with persistent metabolic (hyperchloremic) acidosis. No studies to date have demonstrated superiority of ISS to PL Four major clinical trials – SALT ED, SMART, BaSics and PLUS– were conducted to compare outcomes of acute and critically ill patients randomized to either balanced salt solutions (sodium lactate products – Hartmann’s, Lactated Ringers or PL) or ISS. The first 2 studies demonstrated that ISS was associated with renal dysfunction and worse outcomes with sepsis. The BaSics and PLUS trials, in their initial reporting, showed no outcome differences. However, these trials were “catch” all ICU studies, including perioperative patients, patients pre-resuscitated with ISS, and, overall very little fluid was administered. The studies were grossly underpowered to detect outcome differences. However, subsequent systematic reviews and meta-analyses that included these data, and subgroup analyses of high risk patients, determined that fluid resuscitation with ISS was associated with worse 30 mortality, particularly in sepsis, and worse renal outcomes.

It is my view that, based on decades of research and experience, “normal” Saline (ISS) should not be used as a first line agent for fluid resuscitation in critical illness. I believe that the current international guidelines for the management of DKA are flawed in that they continue to recommend the administration of an agent that may well be toxic to patients, particularly when alternatives are easily available. Watch the video and make up your own mind.

HYPERCHLOREMIC ACIDOSIS

Hyperchloremic Acidosis is a common problem. It is usually an iatrogenic problem. Unfortunately, the majority of doctors who cause a patient to have Hyperchloremic Acidosis (HCA) are either unaware of the problem or ambivalent to it. For the most part, HCA is caused by the intravenous administration of isotonic saline solution (NS – “normal saline – NaCl 0.9%). This problem has been known about for more than 100 years and led Alexis Hartmann, a pediatrician from St Louis, to construct a balanced intravenous fluids, that he called “Lactated Ringers” solution. Ironically, in clinical practice, HCA is induced as part of the local hospital “protocol” for management of Diabetic Ketoacidosis. Inevitably, as the ketones fall, the Chloride rises, and the acidosis persists.

HCA is the only cause of “normal” anion gap metabolic acidosis and is almost always caused, . In the tutorial I explain that HCA is caused by a reduction in the Na-Cl strong ion difference (SID). The acidosis associated with NaCl 0.9% is more complex that merely a rise in plasma Chloride. Other serum electrolytes, Albumin and Hemoglobin are diluted – and this has an alkalinizing effect. Other resuscitation fluids have different impacts on acid base. Hyperchloremia is also a feature of Renal Tubular Acidosis (RTA), various other nephropathies, the administration of acetazolamide and other drugs, and following surgical transplantation of the ureters into the small bowel, If renal function is normal, and the Chloride level is lower than 125mmol/L, then the patient’s kidneys will resolve the problem over 36 to 48 hours. If the Chloride is very high, acidosis will persist, particularly in patients with poor renal function, and Sodium Bicarbonate infusions may be warranted.

kPa “RULES” – Part 2: The “Rules of Acid Base”

Traditionally rules of thumb regarding the changes in PaCO2 and Bicarbonate in acid base balance have utilized mmHg. Unfortunately, in large tracts of the world, particularly in Europe, blood gases are reported in the SI unit kPa. This tutorial is for those people. I cover various acid base abnormalities – pH vs PaCO2, acute and chronic respiratory acidosis, respiratory alkalosis, metabolic acidosis and alkalosis and go through the various acid base rules of thumb using kPa, with examples. I guarantee you’ll learn something.

Rules:

Rule 1 H+ vs pH: a 1nmol/L increase in [H+} results in a 0.01 fall in pH

Rule 2 PaCO2 in Apnea: In apnea the PaCO2 rises by 1.5kPa in the first minute and by 0.5kPa per minute thereafter (this reduces progressively over time to 0.2-3kPa)

Rule 3 PaCO2 vs pH: For every 1kPa increase in the PaCO2 the pH falls by 0.06

Rule 4 PaCO2 vs HCO3 in Acute Respiratory Failure: For every 1kPa increase in the PaCO2, the HCO3 rises by 1mmol/L

Rule 5 PaCO2 vs HCO3 in Chronic Respiratory Failure: For every 1kPa increase in the PaCO2, the HCO3 rises by 3mmol/L and the Chloride falls by an equal value.

Rule 6 PaCO2 vs HCO3 in Acute Respiratory Alkalosis: For every 1kPa increase in the PaCO2, the HCO3 falls by 2mmol/L

Rule 7 PaCO2 versus Base Deficit in Acute Metabolic Acidosis: For every 1mmol/L increase in the Base Deficit (-BE e.g. from -1 to -2), the PaCO2 falls by 0.13kPa e.g. if the BD is -10 the PaCO2 will fall by 1.3kPa from 5.3 to 4

Rule 8 PaCO2 vs HCO3 in Chronic Metabolic Alkalosis (in ICU): For every 1mmol/L increase in the Base Excess (or HCO3) the PaCO2 increase by 0.13kPa e.g. if the BE is +10 then the PaCO2 will increase from 5.3 to 6.6

@ccmtutorials http://www.ccmtutorials.org

Ketoacidosis

This tutorial looks at the problem of ketoacidosis and, in particular, focuses on diabetic ketoacidosis. Ketones are produced from free fatty acids in the liver, converted to acetyl coenzyme A and oxidatively metabolized for energy production or packaged in the form of acetoacetate or beta hydroxybutyrate and exported to the tissues. This occurs continuously in the body. Control over metabolism is provided by insulin. When insulin levels are high glucose is utilized primarily for energy production and fatty acid metabolism is curtailed. When insulin levels are low fatty acids become the primary source of energy. In situations of very low carbohydrate intake ketones may be measurable in the blood and we call this ketosis. When plasma ketones exceed 3 millimoles per liter this results in a strong ion effect and ketoacidosis. This is generally only seen in states of metabolic failure such as type 1 diabetes starvation and alcoholism.

The ketones acetoacetate and beta hydroxybutyrate are strong anions and cause metabolic acidosis when they accumulate. This manifests as a fall in the bicarbonate and an increase in the base deficit. Classically there is a widened anion gap metabolic acidosis with full respiratory compensation. Nevertheless the extent of the acidosis is rarely explained by ketones alone. Lactic acidosis is frequently present as is acidosis caused by the accumulation of metabolic junk products. Iatrogenic metabolic acidosis may ensue caused by the administration of hyperchloremic (0.9% NaCl + KCl) saline solutions.

Diabetic ketoacidosis is characterized by loss of control of blood glucose, loss of control of blood lipids and hypercatabolism of proteins. Failure to suppress gluconeogenesis within the liver depletes the tricarboxylic acid cycle reserves and results in uncontrolled ketone production. Patients become hyperglycemic glycosuric, keto acidotic, initially hyponatremic, later hypernatremic, and hyperkalemic. The treatment is to fluid resuscitate the patient, administer insulin by intravenous infusion, replenish glycogen stores and provide glucose for intracellular substrate and prevent further ketone production. Extra care must be taken to avoid hypoglycemia and hypokalemia. @ccmtutorials

Osmotic Demyelination Syndrome / Central Pontine Myelinolysis – final thoughts

I often wonder if the obsession amongst physicians regarding the prevention of Osmotic Demyelination Syndrome (ODS or Central Pontine Myelinolysis – CPM) results in adverse patient outcomes – for example a greater incidence of iatrogenic complications, prolonged length of stay etc.

In this discussion, I look at the history of ODS/CPM, how it became identified with rapid correction of hyponatremia and what patients are at particular risk of this disorder. In the second part of the discussion I address the re-ignited controversy about Sodium/Osmolality correction subsequent to the publication of a major study in NEJM Evidence in 2023.

Ultimately each clinician must make up their own minds on the evidence that is available. It appears to me that there is little or no risk of ODS/CPM in patients with acute hyponatremia, symptomatic or not, and those with a plasma sodium of greater than 120mmol/L. Patients with Sodium levels below 105mmol/L, alcoholics or cirrhotics and malnourished patient appear to be at very high risk. Finally attention should be paid not only to the speed of correction, but where the plasma sodium levels ends up. In many studies – ODS/CMP is a late diagnosis and patients, at the time of diagnosis are hypernatremic (greater than 145mmol/l) – although the rise in Sodium/Osmolality may appear slow over days or weeks.

Hyponatremia – 1. Understanding and Working the Problem

This is the first tutorial in a short series on hyponatremia. About 15% of our critical care patients has a problem with dysnatremia — high or low sodium levels in plasma. Hyponatremia, with symptoms, is a medical emergency as it can result in cerebral edema and irreversible brain injury.

In this tutorial I first present two case of hyponatremia – one that needs to be treated emergently and one that does not, despite both having the same plasma sodium levels. I then proceed to discuss the physiology of sodium and why it is a key component of body osmolality. The main part of the tutorial is developing a decision tree for working the hyponatremic problem. The key question is whether this is hypotonic or non hypotonic hyponatremia. If it is non hypotonic you need to look for other sources of unmeasured osmoles (usually alcohols). Hypotonic hyponatremia may be associated with myriad problems – but your main concern is whether or not this is being caused by kidney injury or blockade or normal renal pathways (e.g. diuretics). Ultimately I provide an algorithm for how to make a firm diagnosis of the cause of hyponatremia.  @ccmtutorials