Assessing Mechanical Ventilation

One of the most intimidating things about entering the ICU for the first time is the “life support machine” – the mechanical ventilator. Although I have posted an extensive series of tutorials on Mechanical Ventilation, covering most of the modes, oxygen therapy and applied respiratory physiology, I have attempted, in this tutorial, to distill everything to the “least you have to know” in 40 minutes. Keep in mind that modern machines look more like iPhones, and are far easier to use than the devices I grew up with that looked to me, on day 1, like something in the cartoon below.

I start with a discussion about the difference between normal breathing, CPAP and Positive Pressure Ventilation (PPV). PEEP is, effectively, CPAP during PPV. I then go on to discuss pressure limited modes of ventilation; worldwide this are the most widely used modes in ICU. I limit my discussion to Pressure Assist Control, Volume Guaranteed Pressure Control (VG_PC) and Pressure Support Ventilation (PSV). VG-PC is a popular and flexible option as an ICU’s default mode. However, as it is a pressure controlled mode, there is significant variability in tidal volume and airway pressure from minute to minute.

Several important rules are emphasized: the tidal volume should, in general be lower than 6ml/kg of ideal body weight, the plateau pressure lower than 30cmH2O and the driving pressure lower than 15cmH2O. I introduce the Spontaneous Breathing Index (SBI = RR/TV in L). The magic number is 100. We use the SBI to determine the success of weaning on PSV.

Volume Controlled Ventilation is the predominant mode use in the Operating Rooms (Theatres), and Volume Assist Control is a popular mode in North America. In ICU you must set a peak inspiratory flow and be aware that this may be insufficient during assisted breaths and lead to dys-synchrony. Volume Control is often used in ARDS to “lock in” the Tidal Volume (TV) but the operator must be aware that the TV that matters is not what is dialed up on the ventilator, but what the patient exhales.

I go on to discuss how to assess the patient on invasive mechanical ventilation, by looking at whether they are breathing spontaneously, in which case we determine whether they are suitable for a Pressure Support wean or not, or whether or not there is a problem with oxygenation (increase FiO2, PEEP, Mean Airway Pressure and seriously consider Prone Positioning) or Ventilation (increase Respiratory Rate, Tidal Volume or both, reduce PEEP).

The final part of the tutorial looks at Non Invasive Ventilation (NIV), and I explain how, in general we only use 2 modes on standalone devices – CPAP and Spontaneous Timed (S/T). The latter is similar to PSV with a backup rate, but I point out that instead of PEEP+PS the breath is EPAP + IPAP and IPAP is not built upon IPAP, as is the case with PSV. If one is delivering NIV on an ICU ventilator, then “leak” adjustment or “leak sync” should be used.

@ccmtutorials

Why isn’t the patient breathing up? (Triggering the Ventilator)

Is there anything more frustrating in the ICU when you decide to start weaning a patient – they look like they’re assisting the ventilator. You switch them over to a “spontaneous” mode and then……nothing…..no breaths….eventually the backup starts.

This tutorial is about triggering of mechanical ventilation. I will revisit how patients trigger the ventilator, the different systems used and introduce I-Sync – a new method of triggering.

Finally I will discuss the problem of Auto-PEEP and explain why, in the setting of Auto-PEEP, there is no point fiddling with the flow by or negative pressure.

I guarantee you will learn something. @ccmtutorials www.ccmtutorials.org

The Wibbly Wobbly Waveform – Expiratory Dysynchrony

Expiratory dysynchrony is a major unrecognized problem in critical care. Usually it takes one of two forms: a terminal upstroke on the pressure waveform, indicating pressure cycling (breath too long) or a W shaped anomaly in the expiratory flow waveform – indicative of the breath being too short or too long. I call this the “Wibbly Wobbly Waveform”.

This tutorial looks at expiratory dysynchrony – why it happens and how to make adjustments to resolve the problem. I also introduce a relatively new technology: IE Sync.

Help – The Patient is Fighting the Ventilator

The patient is turning purple in the bed, alarms are going off, he  is desaturating: he is “fighting the ventilator.” Although a widely used description I believe that it is misused to redefine the problem away from an issue of ventilator operator competency and reframe it as a patient problem. It is not. Most of the time that patient have negative interactions with the ventilator it is a problem of triggering, flow or expiratory cycling. The treatment is not deep sedation and controlled ventilation. The treatment requires skill and nuance, and does not always work. This tutorial looks at inspiration and reasons why it may go wrong.

The most frequently seen patient ventilator dysynchrony is scooping of the pressure waveform, usually associated with flow limited volume controlled ventilation. This can be resolved by increasing the peak flow or changing to pressure control.

In general the ambition to establish a patient on spontaneous assisted ventilation is laudable, but oftentimes we have no idea about what is going on underneath the pressure, flow and volume waveforms. In this tutorial I try and correct the narrative about patient-ventilator interaction when using pressure support. I suggest that volume support in some situations may be a superior approach. I point out that the tidal volume in pressure support has little to do with patient effort and more to do with lung compliance.

I finish the tutorial with a discussion about the inspiratory rise time and explain why you must be careful when using older ventilators.

@ccmtutorials  http://www.ccmtutorials.org